
Computer Architecture
RISC-V Memory Access and Control Transfer Instructions

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html


© Supranee / Adobe Stock

Previously on FDS
RISC-V Instruction Set Architecture

• Registers

• Integer Computational Instructions

2CS-173, © EPFL, Spring 2025



3

A Simple Computer
CPU + Memory

CS-173, © EPFL, Spring 2025

Data Memory

MemDataOut

Address Wr

MemDataIn

Instruction
Memory

Address

MemDataOut

+

1

Program
Counter (PC)D QMUX

SEL

Control Logic (Read, Decode, Update PC)

MUX

SEL

ALU
Register

File

A

B

W

AW Wr AA AB

Op

CPU



4

RV32I Instruction Set Architecture
Outline

▪ Registers

▪ Integer computational instructions

▪ Instruction formats (R/I/U)

▪ Memory read (load) and write (store) instructions

▪ Control transfer instructions

▪ Instruction formats, contd. (S/B/J)
▪ Some topics are out of scope for CS-173, to be covered in the Computer Architecture CS-208

• Memory model; Control and status register instructions;

• Environment call and breakpoints; Exceptions, traps, and interrupts;

CS-173, © EPFL, Spring 2025

Previous lecture



5

RV32I Instruction Set Architecture
Outline

▪ Registers

▪ Integer computational instructions

▪ Instruction formats (R/I/U)

▪ Memory read (load) and write (store) instructions

▪ Control transfer instructions

▪ Instruction formats, contd. (S/B/J)
▪ Some topics are out of scope for CS-173, to be covered in the Computer Architecture CS-208

• Memory model; Control and status register instructions;

• Environment call and breakpoints; Exceptions, traps, and interrupts;

CS-173, © EPFL, Spring 2025

This lecture



Let’s Talk About
RV32I ISA, Continued…

6CS-173, © EPFL, Spring 2025

© Supranee / Adobe Stock



© Supranee / Adobe Stock

7

Quick Outline

▪ Memory
• General properties

• Instruction alignment: Example

• Byte ordering (endianness)

• Memory read: load instructions

• Example

• Memory write: store instructions

• Example

▪ Conditional branches: Example

▪ Unconditional jumps

▪ Pseudoinstructions:

• j and mv
CS-173, © EPFL, Spring 2025



Memory
• General Properties

• Byte Order (Endianness)

8CS-173, © EPFL, Spring 2025

© Supranee / Adobe Stock



Memory
RV32I, General Properties

▪ 32-bit addresses
• Address range: from 0 to (232 – 1)

▪ Data width is one Byte = 1 B

▪ Memory capacity:
• NumAddresses × DataWidth = 232 B

▪ Von Neuman architecture

• Memory is unified and shared by
the program (instructions) and data

9CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Data Width = 1 Byte

Index 
(Address)

0

1

2

232 - 1

232 - 2

232 - 3

… …

Total
Number
of Bytes

= 
Memory
Capacity

Memory for the program and data

Address

Data

32

32



Memory
RV32I, Byte-Addressable

▪ Memory is byte-addressable, 
meaning that one address 
corresponds to one byte

▪ Data size terminology
• Byte = 8 bits =  1 B

• Halfword = 16 bits =  2 B

• Word = 32 bits =  4 B

• Quadword = 128 bits = 16 B

▪ RV32I supports reading/writing
one byte or an entire word at a time

10CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Data Width = 1 Byte

Index 
(Address)

0

1

2

232 - 1

232 - 2

232 - 3

… …

Total
Number
of Bytes

= 
Memory
Capacity

Memory for the program and data

Address

Data

32

32



11

Memory
Visualization

▪ Interchangeable ways of drawing memory layout you will see in literature
• Low addresses at the top

(addresses growing downward)

CS-173, © EPFL, Spring 2025

• High addresses at the top
(addresses growing upward)

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Address

0

1

2

232 - 1

232 - 2

232 - 3

… … Address
increases

mem[232 - 1]

mem[232 - 2]

mem[232 - 3]

mem[2]

mem[1]

mem[0]

Address

232 - 1

0

1

2

… …

232 - 2

232 - 3

Address
increases



Memory
Alignment of Instructions

▪ Recall: 32-bit instructions in RV32I

▪ Instruction occupies one word
• 1 word = 32 bits =  4 B = 22 B

▪ Memory capacity is 232 B, 
which corresponds to 230 words
• Nwords = Memory Capacity / 1 word

= 232 B / 22 B = 230

▪ Instructions must be naturally 
aligned on 32-bit boundaries

12CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Data Width = 1 Byte

Index 
(Address)

0

1

2

232 - 1

232 - 2

232 - 3

… …

Total
Number
of Bytes

= 
Memory
Capacity

Memory for the program and data

Address

Data

32

32



Memory
Alignment of Instructions, Contd.

▪ Recall: Instructions must be naturally 
aligned on 32-bit boundaries

▪ In other words
• Occupy four consecutive addresses

(each address corresponds to one byte)

• Valid address ranges: 0-3, 4-7, 8-11, …

Therefore, instructions span blocks of 
memory addresses in the format

13CS-173, © EPFL, Spring 2025

Address Data

0…0000

32-bit word, k = 1
0…0001

0…0010

0…0011

0…0100

32-bit word, k = 2
0…0101

0…0110

0…0111

0…1000

32-bit word, k = 3
0…1001

0…1010

0…1011

0…1100

32-bit word, k = 4
0…1101

0…1110

0…1111

. . . . . .

Address
increases



Memory
Program Counter Update

▪ Recall: Instructions must be naturally 
aligned on 32-bit boundaries

▪ Program Counter (PC) register keeps
the beginning address of the four bytes
of the program instruction

▪ Consequently, to prepare for reading
the next program instruction from
the memory, the value in the PC is 
increased in steps of four

PC = PC + 4

14CS-173, © EPFL, Spring 2025

Address Data

0…0000

32-bit instruction
0…0001

0…0010

0…0011

0…0100

32-bit instruction
0…0101

0…0110

0…0111

0…1000

32-bit instruction
0…1001

0…1010

0…1011

0…1100

32-bit instruction
0…1101

0…1110

0…1111

. . . . . .

+ 4

+ 4

+ 4

+ 4

PC

PC

PC

PC

Address
increases



CS-173, © EPFL, Spring 2025 15



16

Recall: Registers
RV32I

▪ Program variables
are commonly kept
in t and s registers

▪ Registers are in
the Register File
(not in the memory)

▪ li pseudoinstruction
• li rd, imm

copies the sign-extended
immediate to the destination
register rd

CS-173, © EPFL, Spring 2025

Register Name Description

x0 zero Hard-wired zero

x1 ra *Return address

x2 sp *Stack pointer

x3 gp *Global pointer

x4 tp *Thread pointer

x5–7 t0–2 Temporaries

x8–9 s0–1 Saved registers

x10–11 a0–1 *Function arguments/return values

x12–17 a2–7 *Function arguments

x18–27 s2–11 Saved registers

x28–31 t3–6 Temporaries

* Out of scope for CS-173



E
X

A
M

P
L

E
S

17

Understanding RISC-V Assembly

Examine the code at the left and answer the following questions:

▪ What is the value of t3 at the end of this program?

▪ Assuming the program is in memory starting from the address 
0x20, at which memory address is the instruction below? What 
is the range of memory addresses occupied by this instruction?

sll t3, t3, t1

▪ Rewrite the code to use the slli instruction instead of sll. 
Try reducing the code size (the total number of instructions) as 
much as you can.

▪ How is the pseudoinstruction nop encoded in RV32I?

CS-173, © EPFL, Spring 2025

li    t0, 7
li    t1, 1
sll t2, t0, t1
sll t3, t2, t1
sll t3, t3, t1
add   t3, t3, t2
nop

li rd, imm
pseudoinstruction;
copies the sign-extended immediate 
to the destination register rd



E
X

A
M

P
L

E
S

18

Understanding RISC-V Assembly
Solution

Q: What is the value of t3 at the end of this program?

A: The program multiplies the value of register t0 by 10 and 
places the result in register t3. Therefore, t3 = 0x46 = (70)10.

CS-173, © EPFL, Spring 2025

li    t0, 7
li    t1, 1
sll t2, t0, t1
sll t3, t2, t1
sll t3, t3, t1
add   t3, t3, t2
nop

li t0, 7 # t0 = 7 (input)
li t1, 1 # t1 = 1 (shift amount)
sll t2, t0, t1 # t2 = t0 << 1 = t0 * 2 = 14
sll t3, t2, t1 # t3 = t2 << 1 = t0 * 4 = 28
sll t3, t3, t1 # t3 = t3 << 1 = t0 * 8 = 56
add t3, t3, t2 # t3 = t0 * 10 = 70
nop # no effect (for debugging)li rd, imm

pseudoinstruction;
copies the sign-extended immediate 
to the destination register rd



E
X

A
M

P
L

E
S

Program start

Starts at 0x30:                                                                              Range: from 0x30 to 0x33

19

Understanding RISC-V Assembly
Instruction address

▪ Q: Assuming the program is stored in memory starting from 
address 0x20, at which memory address is the instruction 
below? What is the range of memory addresses occupied by 
this instruction?

sll t3, t3, t1

CS-173, © EPFL, Spring 2025

li    t0, 7
li    t1, 1
sll t2, t0, t1
sll t3, t2, t1
sll t3, t3, t1
add   t3, t3, t2
nop 0x20: li    t0, 7

0x24: li    t1, 1
0x28: sll t2, t0, t1
0x2C: sll t3, t2, t1
0x30: sll t3, t3, t1
0x34: add   t3, t3, t2
0x38: nop



E
X

A
M

P
L

E
S

20

Understanding RISC-V Assembly
Reducing code size

▪ Q: Rewrite the code to use the slli instruction instead of sll. 
Try reducing the code size (the total number of instructions) as 
much as you can.

▪ Q: How is the pseudoinstruction nop encoded in RV32I?

▪ A:

By using slli (shift left logical by the immediate), we saved two instructions, 
resulting in a more compact code, occupying eight bytes less in memory. 
To further reduce the code size, we can remove nop pseudoinstruction.

CS-173, © EPFL, Spring 2025

0x20: li    t0, 7       # t0 = 7
0x24: slli t1, t0, 1   # t1 = t0 << 1 = t0 * 2
0x28: slli t2, t0, 3   # t2 = t0 << 3 = t0 * 8
0x2C: add   t3, t1, t2  # t3 = t0 * 10
0x30: nop # addi x0, x0, 0; can be removed, 

# further reducing the code size in memory

0x20: li    t0, 7
0x24: li    t1, 1
0x28: sll t2, t0, t1
0x2C: sll t3, t2, t1
0x30: sll t3, t3, t1
0x34: add   t3, t3, t2
0x38: nop



CS-173, © EPFL, Spring 2025 21



Big indices, i.e., the BIG end of the 32-bit word

Small indices, i.e., the little end of the 32-bit word

22

Byte Ordering

CS-173, © EPFL, Spring 2025

▪ A 32-bit memory word                                              has four bytes:

Q: How are these bytes mapped to the word's four consecutive memory 
addresses                                                                   ?

A: Two common orderings exist: little endian and big endian
The latest RISC-V ISA specification supports both (20240411). Initially, only little-endian

byte ordering was assumed. 
Unless specified otherwise, we will assume little-endian byte ordering.

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view


Memory
Byte Ordering

Little-endian

▪ The least significant bits of
the word (byte B0, the one at
the “little” end of the word) is at
the lowest memory address

Big-endian

▪ The most significant bits of
the word (byte B3, the one at
the “BIG” end of the word) is at
the lowest memory address

23CS-173, © EPFL, Spring 2025

Address Byte, bits 7 down to 0

. . . . . .

4k – 4 B0

4k – 3 B1

4k – 2 B2

4k – 1 B3

. . . . . .

Address Byte, bits 7 down to 0

. . . . . .

4k – 4 B3

4k – 3 B2

4k – 2 B1

4k – 1 B0

. . . . . .

Address
increases

Address
increases



E
X

A
M

P
L

E
S

24

Instruction Encoding
Little-Endian Byte Order

▪ Consider the instruction srl t0, t1, t2 at memory address 0x100.
Assuming the little-endian byte order, fill in the table below with
the corresponding memory contents.

CS-173, © EPFL, Spring 2025

Address Data

0x100 ?

0x101 ?

0x102 ?

0x103 ?



E
X

A
M

P
L

E
S

25

Instruction Encoding
Solution, Little-Endian Byte Order

▪ srl t0, t1, t2
• Recall: srl is a register-register operation of R-type format

• funct7 = 0

• rs2 = t2 = x7 = (111)2

• rs1 = t1 = x6 = (110)2

• funct3 = (101)2

• rd = t0 = x5 = (101)2

• opcode = (0110011)2

CS-173, © EPFL, Spring 2025

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

7 5 5 3 5 7



E
X

A
M

P
L

E
S

26

Instruction Encoding
Solution, Little-Endian Byte Order

▪ Placing all bits together at their 
corresponding indices, we obtain
the instruction word

CS-173, © EPFL, Spring 2025

funct7 rs2 rs1 funct3 rd opcode

0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1

31 0

funct7 rs2 rs1 funct3 rd opcode

0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1
B0B1B2B3

funct7 = 0
rs2 = t2 = x7 = (111)2

rs1 = t1 = x6 = (110)2

funct3 = (101)2

rd = t0 = x5 = (101)2

opcode = (0110011)2



E
X

A
M

P
L

E
S

27

Instruction Encoding
Solution, Little-Endian Byte Order

▪ Therefore, srl t0,t1,t2 is encoded as 0x007352B3

▪ Finally, with the little end of the word at the lowest memory address
(little-endian byte ordering), the memory contents become:

CS-173, © EPFL, Spring 2025

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode

0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1
B0B1B2B3

Address Data

0x100 0xB3

0x101 0x52

0x102 0x73

0x103 0x00 Note: Check out the online instruction encoder/decoder from UC Davis: Link

https://luplab.cs.ucdavis.edu/2022/06/03/rvcodec-js.html


E
X

A
M

P
L

E
S

28

Instruction Encoding
Big-Endian Byte Order

▪ Consider the instruction srl t0, t1, t2 at memory address 0x100.
Assuming the big-endian byte order, fill in the table below with
the corresponding memory contents.

CS-173, © EPFL, Spring 2025

Address Data

0x100 ?

0x101 ?

0x102 ?

0x103 ?



E
X

A
M

P
L

E
S

29

Instruction Encoding
Solution, Big-Endian Byte Order

▪ Recall: srl t0,t1,t2 is encoded as 0x007352B3

▪ Finally, with the BIG end of the word at the lowest memory address
(little-endian byte ordering), the memory contents become:

CS-173, © EPFL, Spring 2025

Address Data

0x100 0x00

0x101 0x73

0x102 0x52

0x103 0xB3

Big endian

Address Data

0x100 0xB3

0x101 0x52

0x102 0x73

0x103 0x00

Recall: Little endian



CS-173, © EPFL, Spring 2025 30



Memory
• Read = load from memory

• Write = store in memory

31CS-173, © EPFL, Spring 2025

© Supranee / Adobe Stock



32

Memory Read and Write
Load and Store

▪ Memory read/write operations are called load/store

▪ RV32I provides instructions for loading signed and unsigned
• bytes: lb, lbu

• words: lw

▪ Similarly, it provides instructions for storing
• bytes: sb

• words: sw

CS-173, © EPFL, Spring 2025



33

Memory Read and Write
Load and Store, Contd.

▪ Signed bytes read from memory are sign-extended to 32 bits and then 
copied to the destination registers
• Widening of narrow data allows subsequent integer computation instructions to 

operate correctly on all 32 bits, even if the natural data types are narrower

▪ Unsigned bytes read from memory, common in text characters and 
unsigned integers, are zero-extended to 32 bits and then copied

▪ Address and data bus are 32 bits wide; therefore, memory accesses—
reading from it or writing into it—operate on 32-bit binary vectors

CS-173, © EPFL, Spring 2025



34

Load Instructions
I-type Format

▪ Load: Copy a value from memory to register rd in the register file (RF)

▪ The memory address is obtained by adding RF[rs1] and the sign-extended immediate

▪ rs1: 5-bit index of the base register

▪ rd: 5-bit index of the destination register

▪ opcode: (0000011)2, 7-bit operation code

▪ funct3: 3-bit function code (LB/LBU/LW)

▪ imm: 12-bit immediate, often referred to as the offset

CS-173, © EPFL, Spring 2025

Note: The term base comes from it serving as the base 
to which an offset (positive or negative) is applied to 

compute the memory address

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7



35

Load Instructions
I-type Format

▪ lw instruction copies a 32-bit value from memory into the register RF[rd]

▪ lb copies a sign-extended 8-bit value from memory to the register RF[rd]
• lbu is similar, except that it zero-extends instead

CS-173, © EPFL, Spring 2025

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7



36

Load Instructions
Usage

▪ In assembly (offset = imm):

CS-173, © EPFL, Spring 2025

Instruction Operation

lbu rd, offset(rs1) RF [ rd ] = zext ( mem [ RF [ rs1 ] + sext(offset) ] [ 7 : 0 ] )

lb rd, offset(rs1) RF [ rd ] = sext ( mem [ RF [ rs1 ] + sext(offset) ] [ 7 : 0 ] )

lw rd, offset(rs1) RF [ rd ] = mem [ RF [ rs1 ] + sext(offset) ] [31 : 0]

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7

Note: 
- sext( ) stands for sign extension
- zext( ) stands for zero extension



37

Load Instructions
Encoding

▪ Encoding

CS-173, © EPFL, Spring 2025

Source: The RISC-V Instruction Set Manual Volume I, ver. 20240411, page 554, Link

31 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

12 5 3 5 7

Note: Load half-word (LH, LHU) is out of scope for CS-173

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view


CS-173, © EPFL, Spring 2025 38



E
X

A
M

P
L

E
S

39

Memory Reading

▪ Consider the snippet of memory shown at the right

▪ Write the instructions to load 
• One byte from memory address 0x200

• One word from memory address 0x204

▪ Use t0 as the destination register

▪ Little-endian byte ordering

CS-173, © EPFL, Spring 2025

Address Data

… …

0x200 0xB3

0x201 0x52

0x202 0x73

0x203 0x00

0x204 0x26

0x205 0x38

0x206 0x3C

0x207 0x11

… …

Unless specified otherwise, we will always assume little-endian byte ordering.



E
X

A
M

P
L

E
S

40

Memory Reading
Solution, Load Byte

▪ Copy one byte from address 0x200 to register t0:

lb t0, 0x200(zero)

t0 = sext(mem[RF[x0] + 0x200][7:0]) =

= sext(mem[0 + 0x200][7:0]) = sext(mem[0x200][7:0]) =

= sext(0xB3) = sext(1011 0011) =

= 0xFFFF FFB3

Therefore, t0 = 0xFFFF FFB3.
CS-173, © EPFL, Spring 2025

Instruction Operation

lb rd, offset (rs1) RF [ rd ] = sext ( mem [ RF [ rs1 ] + sext(offset) ] [ 7 : 0 ] ) Address Data

… …

0x200 0xB3

0x201 0x52

0x202 0x73

0x203 0x00

0x204 0x26

0x205 0x38

0x206 0x3C

0x207 0x11

… …



E
X

A
M

P
L

E
S

41

Memory Reading
Solution, Load Word, Little Endian

▪ Copy one word from address 0x204 to register t0:

lw t0, 0x204(zero)

t0 = mem[RF[x0] + 0x204][31:0] = 

= mem[0 + 0x204] [31:0]= mem[0x204][31:0]

Conforming to the little-endian byte ordering, t0 = 0x113C3826.

CS-173, © EPFL, Spring 2025

Instruction Operation

lw rd, offset(rs1) RF [ rd ] = mem [ RF [ rs1 ] + sext(offset) ] [31 : 0] Address Data

… …

0x200 0xB3

0x201 0x52

0x202 0x73

0x203 0x00

0x204 0x26

0x205 0x38

0x206 0x3C

0x207 0x11

… …



CS-173, © EPFL, Spring 2025 42



43

Recall: Memory Read and Write
Load and Store

▪ Memory read/write operations are called load/store

▪ RV32I provides instructions for loading signed and unsigned
• bytes: lb, lbu

• words: lw

▪ RV32I provides instructions for storing data in memory
• bytes: sb

• words: sw

CS-173, © EPFL, Spring 2025



44

Store Instructions
S-type Format

▪ Store: Copies data from rs2 from the register file (RF) to the memory

▪ The memory address is obtained by adding RF[rs1] and the sign-extended immediate

▪ rs1: 5-bit index of the base register

▪ rs2: 5-bit index of the register receiving the value

▪ opcode: (0100011)2, 7-bit operation code

▪ funct3: 3-bit function code (SB/SW)

▪ imm: 12-bit immediate, also called offset

CS-173, © EPFL, Spring 2025

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7

Note: The term base comes from it serving as the base 
to which an offset (positive or negative) is applied to 

compute the memory address



45

Store Instructions
Usage

▪ In assembly (offset = imm)

CS-173, © EPFL, Spring 2025

Instruction Operation

sw rs2, offset(rs1) mem [ RF [ rs1 ] + sext(offset) ] [ 31 : 0 ] = RF [ rs2 ]

sb rs2, offset(rs1) mem [ RF [ rs1 ] + sext(offset) ] = RF [ rs2 ] [ 7 : 0 ]

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7

Note: sext( ) stands for sign extension



46

Store Instructions
Encoding

▪ Encoding

CS-173, © EPFL, Spring 2025

31 25 24 20 19 15 14 12 11 7 6 0

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode

7 5 5 3 5 7

Source: The RISC-V Instruction Set Manual Volume I, ver. 20240411, page 554, Link

Note: Store half-word (SH) is out of scope for CS-173

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view


CS-173, © EPFL, Spring 2025 47



E
X

A
M

P
L

E
S

48

Memory Writing

▪ Consider the snippet of memory shown at the right

▪ Write the instructions to store (copy to memory)
• One byte from register t0 to address 0x201

• The entire register t0 to address 0x204

▪ Assume t0 = 0x12052025

▪ Little-endian byte ordering

CS-173, © EPFL, Spring 2025

Address Data

… …

0x200

0x201

0x202

0x203

0x204

0x205

0x206

0x207

… …

Unless specified otherwise, we will always assume little-endian byte ordering.



E
X

A
M

P
L

E
S

49

Memory Writing
Solution, Store Byte

▪ Copy one byte from register t0 to address 0x201; 
t0 = 0x12052025

▪ Solution:

mem[RF[x0] + sext(0x201)] = RF[t0][7:0]

Therefore, mem[0x201] = 0x25

CS-173, © EPFL, Spring 2025

Address Data

… …

0x200

0x201 0x25

0x202

0x203

0x204

0x205

0x206

0x207

… …

Instruction Operation

sb rs2, offset(rs1) mem [ RF [ rs1 ] + sext(offset) ] = RF [ rs2 ] [ 7 : 0 ]

sb t0, 0x201(zero)



E
X

A
M

P
L

E
S

50

Memory Writing
Solution, Store Word, Little Endian

▪ Copy the entire register t0 to address 0x204; 
t0 = 0x12052025

▪ Solution:

mem[RF[x0] + sext(0x204)][31:0] = RF[t0]

Therefore, mem[0x204] = 0x12052025

CS-173, © EPFL, Spring 2025

Address Data

… …

0x200

0x201

0x202

0x203

0x204 0x25

0x205 0x20

0x206 0x05

0x207 0x12

… …

Instruction Operation

sw rs2, offset(rs1) mem [ RF [ rs1 ] + sext(offset) ][31:0] = RF [ rs2 ]

sw t0, 0x204(zero)



CS-173, © EPFL, Spring 2025 51



Conditional Branches

52CS-173, © EPFL, Spring 2025

© Supranee / Adobe Stock



53

A Simple Computer
CPU + Memory

CS-173, © EPFL, Spring 2025

Data Memory

MemDataOut

Address Wr

MemDataIn

Instruction
Memory

Address

MemDataOut

+

1

Program
Counter (PC)D QMUX

SEL

Control Logic (Read, Decode, Update PC)

MUX

SEL

ALU
Register

File

A

B

W

AW Wr AA AB

Op

CPU



54

Conditional Branches

▪ RV32I supports comparing two registers and branching to
a specific code line (instruction) if the register contents are
• equal: beq

• not equal: bne

• greater than or equal: 
• bge (signed comparison)

• bgeu (unsigned comparison)

• less than
• blt (signed comparison)

• bltu (unsigned comparison)

▪ Note: Other relationships can be checked by reversing the operands or by using pseudoinstructions

CS-173, © EPFL, Spring 2025



55

Conditional Branches
Contd.

▪ Branches are typically used for if-else and loops (while, for)

▪ Loops are generally small (< 50 instructions)

▪ Largest branch distance is limited by the size of the code space 
in memory
• Should not branch into the address space for data, variables, external 

input/output devices, etc.

CS-173, © EPFL, Spring 2025



56

Conditional Branches
Contd.

▪ In RISC-V, branches use PC-relative addressing
• Program Counter (PC) register acts as the base memory address

• The immediate in two's complement, encoded within branch instruction, 
serves to compute the offset

• The offset is added with the PC to find the next PC value

CS-173, © EPFL, Spring 2025



Conditional Branches
PC-Relative Addressing

▪ Updated PC, if branch is taken: 
• PC = PC + offset

• offset = imm << 1 = imm × 2

• multiplying the immediate by 2 doubles
the branch address range

• offset is sign-extended, 
can be positive or negative

▪ Otherwise: 
• PC = PC + 4

57CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Address

0

1

2

232 - 1

232 - 2

232 - 3

… …

PC

offset > 0

offset < 0
Address
increases



58

Branch Instructions
B-type Format

▪ rs1: 5-bit index of the first operand register

▪ rs2: 5-bit index of the second operand register

▪ opcode: (1100011)2

▪ funct3: 3-bit function code for branch condition (BEQ/BNE/BLT/BGE/BLTU/BGEU)

▪ imm: 12-bit immediate. Note that imm[0] is not needed (because of the subsequent
multiplication by two which guarantees the least significant bit is zero), which is
why it is replaced by imm[11]. This encoding arrangement keeps imm[4:1] and 
imm[10:5] in their usual place, which simplifies hardware implementation.

CS-173, © EPFL, Spring 2025

31 25 24 20 19 15 14 12 11 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode

7 5 5 3 5 7



59

Branch Instructions
Usage

▪ In assembly (offset = imm × 2)

CS-173, © EPFL, Spring 2025

Instruction Operation

beq rs1, rs2, imm if (rs1 == rs2) pc = pc + sext(offset)

bne rs1, rs2, imm if (rs1   rs2) pc = pc + sext(offset)

blt rs1, rs2, imm if (rs1 <s rs2) pc = pc + sext(offset)

bge rs1, rs2, imm if (rs1 s rs2) pc = pc + sext(offset)

bltu rs1, rs2, imm if (rs1 <u rs2) pc = pc + sext(offset)

bgeu rs1, rs2, imm if (rs1 u rs2) pc = pc + sext(offset)

31 25 24 20 19 15 14 12 11 7 6 0

imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode

7 5 5 3 5 7

Note: sext( ) stands for sign extension;
<s and >s stand for signed comparisons; 

<u and >u stand for unsigned comparisons; 
pc stands for Program Counter;



60

Branch Instructions
Encoding

▪ Encoding

CS-173, © EPFL, Spring 2025

31 30 25 24 20 19 15 14 12 11 8 7 6 0

imm [12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode

7 5 5 3 5 7

Source: The RISC-V Instruction Set Manual Volume I, ver. 20240411, page 554, Link

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view


61

Conditional Branches
Branch Address Range

▪ Recall: Updated PC, if branch is taken: 

• PC = PC + immediate × 2

▪ Otherwise: 

• PC = PC + 4

Q: What is the branch address range?

A: ±4 kiB
• Offset is on 13 bits (12-bit immediate + one bit 

thanks to the multiplication by two); hence, the 
largest absolute offset value is 212, which 
amounts to 210 instructions (32-bit words)

• Therefore, the branch address range is approx. 
±4 kiB on either side of the PC

CS-173, © EPFL, Spring 2025

mem[0]

mem[1]

mem[2]

mem[232 - 3]

mem[232 - 2]

mem[232 - 1]

Address

0

1

2

232 - 1

232 - 2

232 - 3

… …

PC

offset > 0

offset < 0
Address
increases



CS-173, © EPFL, Spring 2025 62



E
X

A
M

P
L

E
S

63

Find the Max of Three Registers

▪ Implement in RISC-V assembly the algorithm 
below, which finds the max of three values x, y, z:

max = x;
if (y > max) max = y;
if (z > max) max = z;

▪ Assume x, y, z are 32-bit values stored consecutively in 
memory, starting from the address in register t3

▪ Use registers t0, t1, t2, and t4 for variables x, y, z, and max
▪ Copy the value of max to memory at the address 

immediately following the variable z

Note: For simplicity, you can assume that x, y, and z are already loaded 

CS-173, © EPFL, Spring 2025

Address Data

… …

from t3
to t3 + 3

x

from t3 + 4
to t3 + 7

y

from t3 + 8
to t3 + 11

z

from t3 + 12
to t3 + 15

max

… …



E
X

A
M

P
L

E
S

64

mv Pseudoinstruction

▪ In RV32I, there is a pseudo instruction called mv, for elegantly 
copying contents of one register to another

▪ mv rd, rs is simply an alias for addi rd, rs, 0

▪ We shall use mv pseudo instruction in this example

CS-173, © EPFL, Spring 2025



E
X

A
M

P
L

E
S

65

Find the Max of Three Registers
Solution

mv t4, t0 # 1: Assume max = x initially
blt t4, t1, set_max_y # 2: if max < y, update max = y

check_z:
blt t4, t2, set_max_z # 3: if max < z, update max = z

store_max:
sw t4, 12(t3) # 4: store final max to memory
beq zero, zero, program_end # 5: unconditional branch

set_max_y:
mv t4, t1 # 6: max = y
beq zero, zero, check_z # 7: unconditional branch

set_max_z:
mv t4, t2 # 8: max = z
beq zero, zero, store_max # 9: unconditional branch

program_end:
nop # 10: program end

CS-173, © EPFL, Spring 2025

max = x;
if (y > max) max = y;
if (z > max) max = z;

x,  y,  z,  max -> 
t0, t1, t2, t4



66

Instruction Execution Sequence

▪ Q: What is the maximum number of instructions this program 
executes, and under which conditions that happens?

▪ A: Longest code execution happens when all checks need to be 
performed, i.e., when x < y < z. 

▪ The corresponding number of executed instructions is 10.

CS-173, © EPFL, Spring 2025



67

Instruction Execution Sequence

▪ Q: Assuming x > y > z, how many instructions does this program 
execute?

▪ A: Six instructions (see below)

CS-173, © EPFL, Spring 2025

mv t4, t0 # Assume max = x initially
blt t4, t1, set_max_y # if max < y, update max = y

check_z:
blt t4, t2, set_max_z # if max < z, update max = z

store_max:
sw t4, 12(t3) 
beq zero, zero, program_end

program_end:
nop



CS-173, © EPFL, Spring 2025 68



Unconditional Jumps

69CS-173, © EPFL, Spring 2025

© Supranee / Adobe Stock



Out of scope for CS-173

70

Jump Instructions

▪ Jump instructions are used for 
• unconditional branches

• calling functions

• returning from functions

▪ Two supported instructions: 
• jump and link: jal

• jump and link register: jalr

▪ J-type format

CS-173, © EPFL, Spring 2025

Difference between a jump and branch functionality is subtle and out of scope for CS-173.



71

J: Unconditional Jump

▪ Pseudoinstruction to elegantly perform an unconditional jump to 
a program label. Usage:

▪ Encoding:

CS-173, © EPFL, Spring 2025

Instruction Operation

j imm pc = pc + sext(offset)
offset = imm × 2

31 30 25 24 21 20 19 12 11 7 6 0

imm [ 20 | 10:1 | 11 | 19:12 ] 00000 1101111

20 5 7



E
X

A
M

P
L

E
S

72

Recall: Find the Max of Three Registers

▪ Implement in RISC-V assembly the algorithm below, which 
finds the max of three values x, y, z:

max = x;
if (y > max) max = y;
if (z > max) max = z;

▪ Assume x, y, z are 32-bit values stored consecutively in memory, 
starting from the address in register t3

▪ Use registers t0, t1, t2, and t4 for variables x, y, z, and max
▪ Copy the value of max to memory at the address immediately 

following the variable z
▪ Use j instead of unconditional branches

Note: For simplicity, you can assume that x, y, and z are already loaded 

CS-173, © EPFL, Spring 2025

Address Data

… …

from t3
to t3 + 3

x

from t3 + 4
to t3 + 7

y

from t3 + 8
to t3 + 11

z

from t3 + 12
to t3 + 15

max

… …



E
X

A
M

P
L

E
S

73

Find the Max of Three Registers
Solution, Use of j helps readability

mv t4, t0 # 1: Assume max = x initially
blt t4, t1, set_max_y # 2: if max < y, update max = y

check_z:
blt t4, t2, set_max_z # 3: if max < z, update max = z

store_max:
sw t4, 12(t3) # 4: store final max to memory
j    program_end # 5: unconditional jump

set_max_y:
mv t4, t1 # 6: max = y
j check_z # 7: unconditional jump

set_max_z:
mv t4, t2 # 8: max = z
j store_max # 9: unconditional jump

program_end:
nop # 10: program end

CS-173, © EPFL, Spring 2025

max = x;
if (y > max) max = y;
if (z > max) max = z;

x,  y,  z,  max -> 
t0, t1, t2, t4



CS-173, © EPFL, Spring 2025 74



75

Literature

CS-173, © EPFL, Spring 2025

Visit online: Link

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

