|

/ /

P

-—Q/—O

=4 Computer Architecture

RISC-V Memory Access and Control Transfer Instructions

)

CS-173 Fundamentals of Digital Systems

Mirjana Stojilovic
Spring 2025

)%

i

FUNDAMENTALEFO

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Previously on FDS
RISC-V Instruction Set Architecture

» Registers

© Supranee / Adobe Stock
* Integer Computational Instructions

CS-173, © EPFL, Spring 2025

A Simple Computer

CPU + Memory

A

Register

B File

MemDataOut
Y MUX

SEL

B

Data Memory

AWWr AA AB
MemDataln SRR
Address Wr

Control Logic (Read, Decode, Update PC)

22777 = o — MembDataOut

omux 1D counter (Pc) @ Address

Instruction

(Memory
+ <
CS-17/3, © EPFL, Spring 2025 \\— 1

RV32l Instruction Set Architecture

Outline

» Reqgisters
= Integer computational instructions
» [nstruction formats (R/l/U) Previous lecture

= Memory read (load) and write (store) instructions
= Control transfer instructions
= [nstruction formats, contd. (S/B/J)

= Some topics are out of scope for CS-173, to be covered in the Computer Architecture CS-208
» Memory model;, Control and status register instructions;
« Environment call and breakpoints; Exceptions, traps, and interrupts,

RV32l Instruction Set Architecture

Outline

» Reqgisters
= Integer computational instructions
= Instruction formats (R/1/U)

= Memory read (load) and write (store) instructions
= Control transfer instructions
= [nstruction formats, contd. (S/B/J)

= Some topics are out of scope for CS-173, to be covered in the Computer Architecture CS-208
» Memory model;, Control and status register instructions;
« Environment call and breakpoints; Exceptions, traps, and interrupts,

This lecture

Let's Talk About

RV32I ISA, Continued...

0;' ’ , © Supranee / Adobe Stock

CS-173, © EPFL, Spring 2025 6

Quick Outline

= Memory

» General properties
Instruction alignment: Example
Byte ordering (endianness)
Memory read: load instructions

« Example
Memory write: store instructions

« Example
= Conditional branches: Example

= Unconditional jJumps S
i ' o © Supranee / Adobe Stock

» Pseudoinstructions:
* jand mv

CS-173, © EPFL, Spring 2025 7

Memory

» General Properties

« Byte Order (Endianness) i

© Supranee / Adobe Stock

CS-173, © EPFL, Spring 2025 8

Memory

RV32l, General Properties

» 32-bit addresses
« Address range: from 0 to (232 - 1)

= Data width isone Byte=1B
= Memory capacity:
« NumAddresses x DataWidth = 252 B

= Von Neuman architecture

« Memory is unified and shared by
the program (instructions) and data

CS-173, © EPFL, Spring 2025

Memory for the program and data

Index
(Address)
0 mem|0]
32
Address # ! mem(1]
39 2 mem|2]
Data /

232_.3 | mem][232- 3]

232_.92 | mem|[232- 2]

232 _1| mem[232- 1]

Data Width = 1 Byte

Total
Number
of Bytes
Memory
Capacity

Memory

RV32Il, Byte-Addressable

= Memory is byte-addressable,
meaning that one address
corresponds to one byte

= Data size terminology

- Byte =8bits =1B
« Halfword =16bits = 2B
« Word =32 bits = 4B

 Quadword =128 bits=161B

= RV32I supports reading/writing
one byte or an entire word at a time

CS-173, © EPFL, Spring 2025

Memory for the program and data

Index
(Address)
0 mem|0]
32 1
Address # ! mem(1]
39 2 mem|2]

Data /

232_.3 | mem][232- 3]
232_.92 | mem|[232- 2]

232 _1| mem[232- 1]

Data Width = 1 Byte

Total
Number
of Bytes

Memory
Capacity

10

Memory

Visualization

= Interchangeable ways of drawing memory layout you will see in literature

» Low addresses at the top
(addresses growing downward)

Address

0 mem|[0]

1 mem|1]

2 mem|[2]
232.3| mem[232- 3]
232_92| mem][232- 2]
232_1| mem[232-1]

CS-173, © EPFL, Spring 2025

Address
increases

High addresses at the top

(addresses growing upward)

Address
2321 mem|[232 - 1]
232-2 | mem|[232- 2]
232_.3 [mem][232- 3]

2 mem|2]
1 mem|[1]
0 mem|[0]

Address
increases

11

Memory

Alignment of Instructions

= Recall: 32-bit instructions in RV32|
= [nstruction occupies one word
« T word=32bits= 4B=22B

= Memory capacity is 232 B,
which corresponds to 239 words
* N,orgs = Memory Capacity / 1 word
=323 /2B = 20

= [nstructions must be naturally
aligned on 32-bit boundaries

CS-173, © EPFL, Spring 2025

Memory for the program and data

32

Address #

32

Data /

Index
(Address)
0 mem|0]
1 mem|1]
2 mem|2]

232_3 | mem][232- 3]
232_.92 | mem|[232- 2]

232 _1| mem[232- 1]

Data Width = 1 Byte

Total
Number
of Bytes

Memory
Capacity

12

Memory

Alignment of Instructions, Contd.

= Recall: Instructions must be naturally
aligned on 32-bit boundaries

= |n other words

« Occupy four consecutive addresses
(each address corresponds to one byte)

 Valid address ranges: 0-3, 4-7, 8-11, ...

Therefore, instructions span blocks of
memory addresses in the format

(4k — 4,4k — 3,4k — 2,4k — 1) , 1 < k <230

Address

.0000
.0001
.0010
.0011
.0100
.0101
.0110
L0111
.1000
.1001
.1010
-1011
.1100
-1101
-1110
1111

O 0o 0o 0o o0 O o0 o0 o 0 o0 o0 o0 o O O

Data

32-bit word, k = 1

32-bit word, k = 2

Address
increases

32-bit word, k =3

32-bitword, k=4

Memory Sy
Program Counter Update .
» Recall: Instructions must be naturally PC—
aligned on 32-bit boundaries
= Program Counter (PC) register keeps w4
the beginning address of the four bytes
of the program instruction PC—
+4
= Consequently, to prepare for reading
the next program instruction from oo
the memory, the value in the PC is -
increased in steps of four
PC=PC+4 o

Address

.0000
.0001
.0010
.0011
.0100
.0101
.0110
L0111
.1000
.1001
.1010
-1011
.1100
-1101
-1110
1111

O 0o 0o 0o o0 O o0 o0 o 0 o0 o0 o0 o O O

Data

32-bit instruction

32-bit instruction

32-bit instruction

32-bit instruction

Address
increases

CS-173, © EPFL, Spring 2025

15

Recall: Registers

RV32|

= Program variables
are commonly kept
int and s registers

» Registers are in
the Register File
(not in the memory)

= 1i pseudoinstruction

e 1i rd, imm
copies the sign-extended
immediate to the destination
register rd

Register Name Description

X0 zero Hard-wired zero

x1 ra *Return address

X2 sp *Stack pointer

X3 gp *Global pointer

x4 tp *Thread pointer
x5-7 t0-2 Temporaries

X8-9 s0-1 Saved registers
x10-11 ao-1 *Function arguments/return values
x12-17 a2-7 *Function arguments
x18-27 s2-11 Saved registers
x28-31 t3-6 Temporaries

* Qut of scope for CS-173

%)
-
o
=
>
i

Understanding RISC-V Assembly

1i te, 7

i t1, 1

sll t2, to, t1
s11 t3, t2, t1
s11 t3, t3, t1
add t3, t3, t2
nop

1li rd, imm

pseudoinstruction;

copies the sign-extended immediate
to the destination register rd

CS-173, © EPFL, Spring 2025

Examine the code at the left and answer the following questions:

What is the value of t3 at the end of this program?

Assuming the program is in memory starting from the address
0x20, at which memory address is the instruction below? What
is the range of memory addresses occupied by this instruction?

sll t3, t3, t1

Rewrite the code to use the slli instruction instead of sll.
Try reducing the code size (the total number of instructions) as
much as you can.

How is the pseudoinstruction nop encoded in RV32I?

17

(7]
i
—
o
=
<
>
]

Understanding RISC-V Assembly

Solution
1i to, 7
1i t1, 1

sll t2, to, t1
s11 t3, t2, t1
s11 t3, t3, t1
add t3, t3, t2
nop

1li rd, imm

pseudoinstruction;

copies the sign-extended immediate
to the destination register rd

CS-173, © EPFL, Spring 2025

Q: What is the value of t3 at the end of this program?

A: The program multiplies the value of register t@ by 10 and
places the result in register t3. Therefore, t3 = 0x46 = (70),.

1i

1i

sll
sll
sll
add
nop

to,
t1,
t2,
t3,
t3,
t3,

to,
t2,
t3,
t3,

t1
t1
t1
t2

Se o T

1o
t1
t2
t3
t3
t3
no

= 7 (input)

= 1 (shift amount)

=to << 1 =10 * 2 =14
= t2 << 1 =10 * 4 = 28
= t3 << 1=1t0 * 8 =56

= t0 * 10 = 70
effect (for debugging)

18

Understanding RISC-V Assembly

Instruction address

= Q: Assuming the program is stored in memory starting from
address 0x20, at which memory address is the instruction

11 te, 7 below? What is the range of memory addresses occupied by
i t1, 1 this instruction?

& s11 t2, teo, ti

% s11 3, t2, t1 sll t3, t3, t1

x

s11 t3, t3, t1

add t3, t3, t2
nop Program start 0x20: 1i to, 7

ox24: 1i t1, 1
ox28: sll t2, to, t1
Ox2C: s1l t3, t2, t1

Starts at 0x30: Ox30: sl1 t3, t3, t1 Range: from 0x30 to 0x33
Ox34: add t3, t3, t2
Ox38: nop

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
>
]

Understanding RISC-V Assembly

Reducing code size

0x20:
Ox24:
Ox28:
Ox2C:
Ox30:
Ox34:
Ox38:

1i

1i

sll
sll
sll
add
nop

to,
t1,
t2,
t3,
t3,
t3,

CS-173, © EPFL, Spring 2025

1
to,
t2,
t3,
t3,

t1
t1
t1
t2

= Q: Rewrite the code to use the s111i instruction instead of s11.
Try reducing the code size (the total number of instructions) as
much as you can.

= Q: How is the pseudoinstruction nop encoded in RV321?

= A:

0Xx20:
Ox24:
0x28:
Ox2C:
Ox30:

1i
slli
slli
add
nop

te, 7 #to = 7
t1, te, 1 # t1 = t0 << 1 = 10 * 2
t2, tO, 3 # t2 = t0 << 3 = t0 * 8

t3, t1, t2 # t3 = to * 10
addi x0, x0, ©; can be removed,
further reducing the code size in memory

By using s111i (shift left logical by the immediate), we saved two instructions,
resulting in a more compact code, occupying eight bytes less in memory.
To further reduce the code size, we can remove nop pseudoinstruction.

20

CS-173, © EPFL, Spring 2025

27

Byte Ordering

= A 32-bit memory word W = {ws1, wso, ..., w1, we} has four bytes:
By ={b7,bg,....,b0} = {wr,we, ..., w1, we} Smallindices, i.e., the little end of the 32-bit word

Bl — {b77b67 "'7b0} — {w157w147 ...,’UJg,’LUg}

By = {b7,bs,...,bo} = {wa3, waz, ..., w17, wie}
B3 ={b7,bg,....,b0} = {ws1,wsq, ..., wa5,wa4} Bigindices, i.e, the BIG end of the 32-bit word

Q: How are these bytes mapped to the word's four consecutive memory
addresses (4k — 4,4k — 3,4k — 2,4k —1) , 1 < k < 2307

A: Two common orderings exist: little endian and big endian

The latest RISC-V ISA specification supports both (202404117). Initially, only little-endian
byte ordering was assumed.

Unless specified otherwise, we will assume little-endian byte ordering.
CS-173, © EPFL, Spring 2025 22

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

Memory

Byte Ordering

Little-endian

» The least significant bits of » The most significant bits of
the word (byte B,, the one at the word (byte B,, the one at
the “little” end of the word) is at the “BIG” end of the word) is at
the lowest memory address the lowest memory address

Address Byte, bits 7 down to 0 Address Byte, bits 7 down to 0

Address 4k=3 B, Address 4k=3 B,

increases 4k — 2 Bz increases 4k — 2 B1

CS-17/3, © EPFL, Spring 2025 e <. ... o e 23

(7]
i
—
o
=
<
x
1]

Instruction Encoding

Little-Endian Byte Order

= Consider the instruction srl t@, t1, t2at memory address 0x100.
Assuming the little-endian byte order, fill in the table below with
the corresponding memory contents.

Address Data
0x100 ?
0x101 ?
0x102 ?
0x103 ?

CS-173, © EPFL, Spring 2025

24

Instruction Encoding

Solution, Little-Endian Byte Order

=srl to, t1, t2
* Recall: srlis a register-register operation of R-type format

3l b U 0 1 5 “ n 1 6

EXAMPLES

funct7 rs2 rsi funct3 rd opcode
7 5 5 3 5 7
« funct7 =0
* 152 =12=x7=(111),
* 151 =11 =x6 = (110),
« funct3 =(101),
e rd =10 =x5=(101),

« opcode =(0110011),

CS-173, © EPFL, Spring 2025

Instruction Encoding

Solution, Little-Endian Byte Order

. . . funct?7 =0
= Placing all bits together at their rs2 =t2=x7=(111),
corresponding indices, we obtain 'S =11 =x6=(110),
: : funct3 =(101),
the instruction word " - 10 = x5 = (101),
i opcode =(0110011),
s
X
funct7 rs2 rst funct3 rd opcode

coooooooo0011T 1T 17T0017T7T017T0171T0017T017T01T17T00 11

3 0

funct7 rs2 rst funct3 rd opcode
000000O0OO0OO0O11T 1T 1T001T17T017T017T0017T01T01T1TO0O01T
B3 BZ B1 BO

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

Instruction Encoding

Solution, Little-Endian Byte Order
3 5 M 00 51 n o 16 0

funct7 rs2 rsi funct3 rd opcode
ocooooo0o000017T 1T 1T0017T7T01T01T0017T017T01100711
BB B2 B1 BO

» Therefore, srl t0,t1,t2 is encoded as 0x007352B3

= Finally, with the little end of the word at the lowest memory address
(little-endian byte ordering), the memory contents become:

Address Data
0x100 0xB3
0x101 0x52
0x102 0x/3

CS-173, © EPFL, Spring 2025 0x103 0x00 Note: Check out the online instruction encoder/decoder from UC Davis: Link 27

https://luplab.cs.ucdavis.edu/2022/06/03/rvcodec-js.html

(7]
w
—
o
=
<
>
1]

Instruction Encoding

Big-Endian Byte Order

= Consider the instruction srl t@, t1, t2at memory address 0x100.
Assuming the big-endian byte order, fill in the table below with
the corresponding memory contents.

Address Data
0x100 ?
0x101 ?
0x102 ?
0x103 ?

CS-173, © EPFL, Spring 2025

28

Instruction Encoding

Solution, Big-Endian Byte Order

» Recall: srl t0,t1,t2is encoded as 0x007/352B3

= Finally, with the BIG end of the word at the lowest memory address
(little-endian byte ordering), the memory contents become:

g

a

E Big endian Recall: Little endian
Address Data Address Data
0x100 0x00 0x100 0xB3
0x101 0x7/3 0x101 O0x52
0x102 0x52 0x102 O0x/3
0x103 0xB3 0x103 0x00

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

30

Memory

* Read = load from memory

* Write = store In memaory 0'. . © Supranee / Adobe Stock

CS-173, © EPFL, Spring 2025 31

Memory Read and Write

Load and Store

» Memory read/write operations are called load/store

= RV32| provides instructions for loading signed and unsigned
* bytes: 1b, 1bu
* words: 1w

= Similarly, it provides instructions for storing
* bytes: sb
« words: SW

CS-173, © EPFL, Spring 2025

32

Memory Read and Write

Load and Store, Contd.

= Signed bytes read from memory are sign-extended to 32 bits and then
copied to the destination registers
« Widening of narrow data allows subsequent integer computation instructions to
operate correctly on all 32 bits, even if the natural data types are narrower

= Unsigned bytes read from memory, common in text characters and
unsigned integers, are zero-extended to 32 bits and then copied

= Address and data bus are 32 bits wide; therefore, memory accesses—
reading from it or writing into it—operate on 32-bit binary vectors

CS-173, © EPFL, Spring 2025 33

Load Instructions

I-type Format

3 0 M 5 u n o [0

imm[11:0] rsi funct3 rd opcode
12 5 3 5 7/
= | oad: Copy a value from memory to register rd in the register file (RF)

= The memory address is obtained by adding RF[rs1] and the sign-extended immediate

= rs1: 5-bit index of the base register
Note: The term base comes from it serving as the base

" rd: 5-bit index of the destination register to which an offset (positive or negative) is applied to
compute the memory address

= opcode: (0000011),, 7-bit operation code
= funct3: 3-bit function code (LB/LBU/LW)

= imm: 12-bit immediate, often referred to as the offset

Load Instructions

I-type Format

3 0 M 5 u n o [0

imm[11:0] rsi funct3 rd opcode

12 5 3 5 7/

= 1w instruction copies a 32-bit value from memory into the register RF[rd]

= 1b copies a sign-extended 8-bit value from memory to the register RF[rd]
« 1buis similar, except that it zero-extends instead

Load Instructions

Usage

3

0 M 5 u n o [0

imm[11:0]

rst funct3 rd opcode

12

5 3 5 7/

= |n assembly (offset = imm):

Instruction

Operation

lbu rd, offset(rsl)

1b
1w

rd, offset(rsl)
rd, offset(rsl)

RF[rd]=zext (mem[RF[rs1]+ sext(offset)][7:0])
RF[rd]=sext (mem [RF [rs1]+ sext(offset) | [7:0])
RF[rd]=mem[RF[rs1]+ sext(offset)][31: 0]

Note:

- sext() stands for sign extension
- zext() stands for zero extension

Load Instructions

Encoding
] 0o 5 W0 1§ 0
imm[11:0] rsi funct3 rd opcode
12 5 3 5 7/
= Encoding

Source: The RISC-V Instruction Set Manual Volume |, ver. 20240411, page 554, Link

imm[11:0] rsi 000 rd 0000011 LB
imm[11:0] rsi 001 rd 0000011 LH
imm[11:0] rsi 010 rd 0000011 LW
imm[11:0] rsi 100 rd 0000011 LBU
imm[11:0] rsi 101 rd 0000011 LHU

Note: Load half-word (LH, LHU) is out of scope for CS-173
CS-173, © EPFL, Spring 2025 37

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

CS-173, © EPFL, Spring 2025

38

(7]
i
—
o
=
<
x
1]

Memory Reading

= Consider the snippet of memory shown at the right

= \Write the instructions to load
* One byte from memory address 0x200
* One word from memory address 0x204

= Use 10 as the destination register
= |ittle-endian byte ordering

Unless specified otherwise, we will always assume little-endian byte ordering.

CS-173, © EPFL, Spring 2025

Address

Data

0x200
0x201
0x202
0x203
0x204
0x205
0x206
0x207

O0xB3
0x52
0x7/3
0x00
0x26
0x38
0x3C
0x11

39

(7]
i
—
o
=
<
x
1]

Memory Reading

Solution, Load Byte

Instruction Operation

1b rd, offset (rsl) RF[rd]=sext(mem[RF[rs1]+ sext(offset)][7:0])

= Copy one byte from address 0x200 to register te:

Register Name Description

1 b t@) @XZ@@ (Ze r‘O) X0 zero Hard-wired zero

t0 = sext(mem[RF[x0] + 0x200][7:0]) =
= sext(mem|0 + 0x200][7:0]) = sext(mem|[0x200][7:0]) =
= sext(0xB3) = sext(1011 0011) =
= OXFFFF FFB3

Therefore, t0 = OXFFFF FFB3.

CS-173, © EPFL, Spring 2025

Address Data
0x200 0xB3
0x201 0x52
0x202 0x7/3
0x203 0x00
0x204 0x26
0x205 0x38
0x206 0x3C
0x207 0x11

40

(7]
i
—
o
=
<
x
1]

Memory Reading

Solution, Load Word, Little Endian

Instruction Operation

lw rd, offset(rsl) RF[rd]=mem[RF[rs1]+ sext(offset)][31:0]

= Copy one word from address 0x204 to register te:
lw t0, 0x204(zero)

t0 = mem[RF[x0] + 0x204][31:0] =
= meml0 + 0x204] [371:0]= mem[0x204][31:0]

Conforming to the little-endian byte ordering, t0 = 0x113C3826.

CS-173, © EPFL, Spring 2025

Address Data
0x200 0xB3
0x201 0x52
0x202 0x7/3
0x203 0x00
0x204 0x26
0x205 0x38
0x206 0x3C
0x207 0x11

41

CS-173, © EPFL, Spring 2025

42

Recall: Memory Read and Write

Load and Store

» Memory read/write operations are called load/store

= RV32I| provides instructions for storing data in memory
* bytes: sb
« words: SW

CS-173, © EPFL, Spring 2025

43

Store Instructions

S-type Format

3 5 U n 1 B 1" n 16 0

imm[11:5] rs2 rsi funct3 | imm[4:0] opcode
/ S S 3 S /
= Store: Copies data from rs2 from the register file (RF) to the memory

The memory address is obtained by adding RF[rs1] and the sign-extended immediate

= rs1: 5-bit index of the base register
= rs2: 5-bit index of the register receiving the value
_ _ Note: The term base comes from it serving as the base
= opcode: (0100011),, 7-bit operation code to which an offset (positive or negative) is applied to
. . compute the memory address
= funct3: 3-bit function code (SB/SW)
= imm: 12-bit immediate, also called offset

CS-173, © EPFL, Spring 2025 44

Store Instructions

Usage

3 5 U 0 1M B 1 n 16 0

imm[11:5] rs2 rs1 funct3 | imm[4:0] opcode

* [n assembly (offset = imm)

Instruction Operation
sw rs2, offset(rsi) mem [RF [rs1] + sext(offset)] [31:0] =RF[rs2]
sb rs2, offset(rsi) mem [RF [rs1] + sext(offset)] =RF [rs2][7:0]

Note: sext() stands for sign extension

Store Instructions

Encoding
| b M 0 10 f | n i I 6 0
imm[11:5] rs2 rsi funct3 | imm[4:0] opcode
7 5 5 3 5 7
= Encoding

Source: The RISC-V Instruction Set Manual Volume |, ver. 20240411, page 554, Link

imm[11:5] rs2 rsi 000 imm[4:0] 0100011 SB
imm[11:5] rs2 rsi 001 imm[4:0] 0100011 SH
imm[11:5] rs2 rsi 010 imm[4:0] 0100011 SW

Note: Store half-word (SH) is out of scope for CS-173

CS-173, © EPFL, Spring 2025 46

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

CS-173, © EPFL, Spring 2025

47

(7]
w
—
o
=
<
>
]

Memory Writing

= Consider the snippet of memory shown at the right

= Write the instructions to store (copy to memory)
« One byte from register t0 to address 0x201
» The entire register t0 to address 0x204

©x12052025
= |ittle-endian byte ordering

Unless specified otherwise, we will always assume little-endian byte ordering.

= Assume t0

CS-173, © EPFL, Spring 2025

Address

Data

0x200
0x201
0x202
0x203
0x204
0x205
0x206
0x207

48

(7]
w
—
o
=
<
>
]

Memory Writing

Solution, Store Byte

Instruction Operation

sb rs2, offset(rsil) mem [RF [rs1] + sext(offset) | =RF [rs2][7:0]

= Copy one byte from register t0 to address 0x201;
t0 = 0x12052025

= Solution:

sb t@, 0x201(zero)

mem[RF[x0] + sext(0x201)] = RF[t0][7:0]
Therefore, mem[0x201] = 0x25

CS-173, © EPFL, Spring 2025

Address

Data

0x200
0x201
0x202
0x203
0x204
0x205
0x206
0x207

Ox25

49

(7]
w
—
o
=
<
>
]

Memory Writing

Solution, Store Word, Little Endian

Instruction Operation

sw rs2, offset(rsil) mem [RF [rs1] + sext(offset)][31:0] = RF [rs2]

= Copy the entire register t0 to address 0x204;
tO = 90x12052025

= Solution:

sw t@, 0x204(zero)

mem|[RF[x0] + sext(0x204)][31:0] = RF[t0]
Therefore, mem[0x204] = 0x12052025

CS-173, © EPFL, Spring 2025

Address

Data

0x200
0x201
0x202
0x203
0x204
0x205
0x206
0x207

0x25
0x20
0x05
0x12

50

CS-173, © EPFL, Spring 2025

51

Conditional Branches

07' ’ , © Supranee / Adobe Stock

CS-173, © EPFL, Spring 2025 52

CPU + Memory

A Simple Computer i
A
Register
MemDataOut W Re > ALU
> MUX B op
SEL
Data Memory W We AA AR /
r :
MembDatalin I9999999929999% CPU
Add!'ess Wr
agic (Read, Decode, Update PC)
""" MembDataOut
Program
omux 1D counter (Pc) @ Addrgss
975, Instruction
Memory

.

CS-173, © EPFL, Spring 2025

53

Conditional Branches

= RV32| supports comparing two registers and branching to
a specific code line (instruction) if the register contents are
» equal: beq
* not equal: bne

 greater than or equal:
* bge (signed comparison)
 bgeu (unsigned comparison)
* less than
 blt (signed comparison)
 bltu (unsigned comparison)

= Note: Other relationships can be checked by reversing the operands or by using pseudoinstructions

Conditional Branches

Contd.

= Branches are typically used for if-else and loops (while, for)
= | oops are generally small (< 50 instructions)

= _argest branch distance is limited by the size of the code space
IN memory

« Should not branch into the address space for data, variables, external
iInput/output devices, etc.

Conditional Branches

Contd.

= In RISC-V, branches use PC-relative addressing
« Program Counter (PC) register acts as the base memory address

« The immediate in two's complement, encoded within branch instruction,
serves to compute the offset

* The offset is added with the PC to find the next PC value

Conditional Branches

PC-Relative Addressing

= Updated PC, if branch is taken:
« PC = PC + offset
e offset=imm<<1=immx2

« multiplying the immediate by 2 doubles
the branch address range

 offset is sign-extended,
can be positive or negative

= Otherwise:
- PC=PC+4

CS-173, © EPFL, Spring 2025

Address
0 mem][0]
1 mem|[1]
2 mem|[2]

Address
increases

2323

232.2

232 - 1

mem|[232 - 3]

mem|[232 - 2]

mem|[232 - 1]

offset <0

offset >0

57

Branch Instructions

B-type Format

3 5 U 0 1M B 1 n 16 0

imm[12]10:5] rs2 rs1 funct3 | imm[4:1]|11] opcode
/ S S 3 S 7/
= rs1: 5-bit index of the first operand register
= rs2: 5-bit index of the second operand register

opcode: (1100011),
funct3: 3-bit function code for branch condition (BEQ/BNE/BLT/BGE/BLTU/BGEU)

" imm: 12-bit immediate. Note that imm][0] is not needed (because of the subsequent
multiplication by two which guarantees the least significant bit is zero), which is
why it is replaced by imm[11]. This encoding arrangement keeps imm[4:1] and
imm[10:5] in their usual place, which simplifies hardware implementation.

CS-173, © EPFL, Spring 2025

58

Branch Instructions

Usage

3 5 U 0 1M B 1 n 16 0

imm[12]10:5] rs2 rs1 funct3 | imm[4:1]|11] opcode
/ 5 5 3 5 7/
= |n assembly (offset = imm x 2)

Instruction Operation

beq rsl, rs2, imm if (rs1 ==rs2) pc = pc + sext(offset)
bne rsi, rs2, imm if (rs1 # rs2) pc = pc + sext(offset)
blt rsi, rs2, imm if (rs1 <, rs2) pc = pc + sext(offset)
bge rsl, rs2, imm if (rs1 >, rs2) pc = pc + sext(offset)
bltu rsil, rs2, imm if (rs1 <, rs2) pc = pc + sext(offset)
bgeu rsi, rs2, imm if (rs1>,rs2) pc = pc + sext(offset)

Note: sext() stands for sign extension;

<. and > stand for signed comparisons;

<, and >, stand for unsigned comparisons,
pc stands for Program Counter;

Branch Instructions

Encoding
30 5 U n " 5 u n o 8§ 1 ¢
imm [12|10:5] rs2 rsi funct3 | imm[4:1]|11] opcode
/ S S 3 S 7/
= Encoding
Source: The RISC-V Instruction Set Manual Volume |, ver. 20240411, page 554, Link

imm[12]10:5] rs?2 rsi 000 imm[4:1|11] 1100011 BEQ
imm[12[10:5] rs? rsi 001 imm[4:1]11] 1100011 BNE
imm[12[10:5] rs? rsi 100 imm[4:1]11] 1100011 BLT
imm[12]10:5] rs?2 rsi 101 imm[4:1|11] 1100011 BGE
imm[12]10:5] rs?2 rsi 110 imm[4:1|11] 1100011 BLTU
imm[12[10:5] rs? rsi 111 imm[4:1]11] 1100011 BGEU

CS-173, © EPFL, Spring 2025

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

Conditional Branches

Branch Address Range

» Recall: Updated PC, if branch is taken:
 PC = PC + immediate x 2

= Otherwise;
e PC=PC+4

Q: What is the branch address range?

A: +4 kiB

« Offsetis on 13 bits (12-bit immediate + one bit
thanks to the multiplication by two); hence, the
largest absolute offset value is 212, which
amounts to 219 instructions (32-bit words)

» Therefore, the branch address range is approx.
+4 kiB on either side of the PC

CS-173, © EPFL, Spring 2025

Address
increases

Address
0 mem][0]
1 mem|[1]
2 mem|[2]

2323

232.2

232 - 1

mem|[232 - 3]

mem|[232 - 2]

mem|[232 - 1]

offset <0

offset >0

61

CS-173, © EPFL, Spring 2025

62

(7]
i
—
o
=
<
>
]

Find the Max of Three Registers

Implement in RISC-V assembly the algorithm
below, which finds the max of three values x, y, z:

max = X;
if (y > max) max = y;
if (z > max) max = z;

= Assume X, Y, z are 32-bit values stored consecutively in
memory, starting from the address in register t3

= Useregisters 10, t1, t2, and t4 for variables x, y, z, and max

= Copy the value of max to memory at the address
immediately following the variable z

Note: For simplicity, you can assume that x, y, and z are already loaded

CS-173, © EPFL, Spring 2025

Address

Data

from t3
tot3+3

fromt3 + 4
tot3+7

fromt3 + 8
tot3+ 11

fromt3 +12
tot3+15

max

63

(7]
i
—
o
=
<
>
]

mv Pseudoinstruction

= |n RV32l, there is a pseudo instruction called myv, for elegantly
copying contents of one register to another

=mv rd, rsissimplyanaliasforaddi rd, rs, ©

= \We shall use mv pseudo instruction in this example

CS-173, © EPFL, Spring 2025

64

(7]
i
—
o
=
<
>
]

Find the Max of Three Registers i (2 > max) max

Solution

mv
blt
check z:
blt
store_max:
SW
beq
set _max_y:
mv
beq
set _max_z:
mv
beqg

program_end:

nop

CS-173, © EPFL, Spring 2025

t4, to
t4, tl, set max y

t4, t2, set max z

t4, 12(t3)
zero, zero, program end

t4, t1
zero, zero, check z

t4, t2
zero, zero, store max

H R

H H

H H

H H

max = X;
if (y > max) max = y;

1l
N
e

X, Y, Z, max ->
te, ti, t2, t4

1: Assume max = X initially
2: if max < y, update max =y

3: if max < z, update max = z

4. store final max to memory

5: unconditional branch

6: max =y
7: unconditional branch

8: max = z

9: unconditional branch

10: program end

Register Name Description
X0 zero Hard-wired zero

65

Eb Instruction Execution Sequence

» Q: What is the maximum number of instructions this program
executes, and under which conditions that happens?

= A: Longest code execution happens when all checks need to be
performed, i.e, when x<y<z

= The corresponding number of executed instructions is 10.

CS-173, © EPFL, Spring 2025

66

Instruction Execution Sequence

= Q: Assuming x >y >z, how many instructions does this program
execute?

= A: Six instructions (see below)

mv t4, to # Assume max = X initially

blt t4, tl1, set max y # if max < y, update max =y
check z:

blt t4, t2, set max z # if max < z, update max = z
store_max:

sw t4, 12(t3)

beq zero, zero, program _end
program_end:

nop

CS-173, © EPFL, Spring 2025

6/

CS-173, © EPFL, Spring 2025

68

Unconditional Jumps

07' ’ , © Supranee / Adobe Stock

CS-173, © EPFL, Spring 2025 69

Jump Instructions

= Jump instructions are used for
 unconditional branches
« calling functions
e returning from functions

= Two supported instructions:
« jump and link: jal
 jump and link register: jalr

= J-type format

Out of scope for CS-173

Difference between a jump and branch functionality is subtle and out of scope for CS-173.

J: Unconditional Jump

= Pseudoinstruction to elegantly perform an unconditional jump to
a program label. Usage:

Instruction Operation

j imm pC = pc + sext(offset)
offset = imm x 2

» Encoding:

0 F M n 0 0 n 16 0
imm[20]10:1]11]19:12] 00000 1107111
20 S 7/

%)
-
o
=
>
i

Recall: Find the Max of Three Registers

= [mplement in RISC-V assembly the algorithm below, which
finds the max of three values x, vy, z

max = X;
if (y > max) max = y;
if (z > max) max = z;

= Assume X, Y, z are 32-bit values stored consecutively in memory,
starting from the address in register t3

= Useregisters 10, t1, t2, and t4 for variables x, y, z, and max

= Copy the value of max to memory at the address immediately
following the variable z

= Use j instead of unconditional branches
Note: For simplicity, you can assume that x, y, and z are already loaded

CS-173, © EPFL, Spring 2025

Address

Data

from t3
tot3+3

fromt3 + 4
tot3+7

fromt3 + 8
tot3+ 11

fromt3 +12
tot3+15

max

72

EXAMPLES

Find the Max of Three Registers

Solution, Use of j helps readability

mv
blt
check z:
blt
store_max:
SW
J
set max_ y:
mv
J
set max_z:
mv

J

program_end:

nop

CS-173, © EPFL, Spring 2025

t4, to

t4, tl, set max y

t4, t2, set max z

t4, 12(t3)
program_end

t4, tl
check z

t4, t2
store_max

H H

H H

S s H H
(00}

max = X;
if (y > max) max =
if (z > max) max =

X, Y, Z, max ->
te, ti, t2, t4

1: Assume max = X initially

2: if max < y, update
3: if max < z, update

4: store final max to
5: unconditional jump

6: max =y
7: unconditional jump

1 max = z
9: unconditional jump

10: program end

max =y

max = Z

memory

Y

/3

CS-173, © EPFL, Spring 2025

74

Literature

CS-173, © EPFL, Spring 2025

The RISC-V Instruction Set
Manual Volume |

Unprivileged Architecture

Version 20240411

Visit online: Link

75

https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view
https://drive.google.com/file/d/1uviu1nH-tScFfgrovvFCrj7Omv8tFtkp/view

